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Expanding Horizons for LP
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• Recent excitement about first-order methods for LP
• “Practical Large-Scale Linear Programming using Primal-Dual Hybrid 
Gradient”, Applegate, Diaz, Hinder, Lu, Lubin, O’Donoghue, and Schudy, 
NeurIPS 2021

• Building on: “An efficient primal-dual hybrid gradient algorithm for total 
variation image restoration”, Zhu and Chan, 2008

• Interest driven largely by prevalence and power of GPUs
• “cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid 

Gradient for Linear Programming in Julia”, Lu and Yang, 2023
• “cuPDLP-C: A Strengthened Implementation of cuPDLP for Linear 

Programming by C language”, Lu, Yang, Hu, Huangfu, Liu, Liu, Ye, Zhang, 
and Ge, 2023

• Important to understand where these methods fit in the LP landscape

First-Order Methods
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• Negatives:
• Low-accuracy solutions

• PDHG typical: 1e-4 relative tol
• Gurobi default: 1e-6 absolute tol
• Could limit crossover

• Very sensitive to parameters
• Often fail to converge

Characteristics of PDHG

• Positives:
• Excellent parallelization on GPUs

• A sequence of…
• Sparse matrix-vector multiplies
• Dense vector operations

• Perfect for GPU
• HBM (High Bandwidth Memory)

• 8-40X+ faster than CPU memory



Parallelism in LP
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• Barrier solver, modest parallelism
• Typically 16 or fewer cores

• Barrier runtime historically dominated by sparse Cholesky factorization
• Parallelizes quite nicely
• Barrier now significantly faster than simplex on a broad test set

• Mainly due to parallelism

• How far can it be scaled?

Parallel Barrier
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• Presolve
• Sparse matrix reordering

• Minimum degree, nested dissection

• Factorization
• Sparse Cholesky

• Step computation
• Triangular solves using factor matrix
• Often many steps from one factor (”Multiple central corrections”)

Typically followed by…

• Crossover
• From an interior solution to a basic solution
• Essentially a less complicated form of simplex

Important Steps in Barrier Algorithm
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• Presolve

• Sparse matrix reordering

• Factorization

• Step computation

• Crossover

Parallelization Opportunities
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• Runtime breakdown
• AMD 7313P, 16-core CPU, runtime>100s (199 models)

Barrier Runtime Breakdown
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• Runtime breakdown
• AMD 7313P, 16-core CPU, runtime>1000s (46 models)

Barrier Runtime Breakdown
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Gauging Scope for 
Improvement
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• PDHG:
• Dominant cost: matrix-vector multiply
• Metric: NZ in A
• Number of iterations: 10K+

Costs

• Interior-point:
• Dominant cost: sparse factorization
• Metric: FP operations
• Number of iterations: ~100

• Scope for improvement: ratio of

 #Factorization ops / #NZ in A
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#Factorization ops / #NZ in A

• For 2576 models in LP test set
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#Factorization ops / #NZ in A

• Back of the envelope – modern CPU…
• Grace CPU: 3.5 Gflops vs (384 GB/s / 24 bytes per NZ / iteration): 220 flops = 1 NZ

• ~100 barrier iterations vs at least 10000 PDHG iterations to solve: 100X more iterations

• Breakeven is probably ~52K ops/NZ

• Look for >220K ops/NZ to have significant scope for improvement
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Scope for Improvement: 
Computing 
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• PDHG on modern GPU versus barrier on…

PDHG Paper…
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PDHG Blog Post…



• Memory bandwidth (peak):
• Nvidia GH200 GPU: 4 Tbytes/s (HBM 3)
• AMD Ryzen 5: 90 GB/s (DDR5)

GPU Advantages (vs Modern Desktop)

• Floating-point performance (fp64 peak):
• Nvidia GH200 GPU: 34 Tflops
• AMD Zen 5 (16 cores): 2.6 Tflops



• Memory bandwidth (peak):
• NVidia GH200 GPU: 4 Tbytes/s (HBM 3)
• AMD Ryzen 5: 90 GB/s (DDR5)
• NVidia GH200 CPU: 384 Gbytes/s (LPDDR5X)
• AMD EPYC 5: 576 Gbytes/s
• Apple M4 Max: 546 Gbytes/s

GPU Advantages (vs Modern High-End CPU)

• Floating-point performance (fp64 peak):
• NVidia GH200 GPU: 34 Tflops
• AMD Zen 5 (16 cores): 2.6 Tflops
• NVidia GH200 CPU (72 cores):  3.5 Tflops
• AMD EPYC 5 (128 cores): 23 Tflops
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Memory-Bound vs CPU-Bound Applications

• Long-standing historical distinction:
• Memory-bound applications:

• Performance limited by memory system speed

• Benchmark: STREAM, HPCG

• Closest LP algorithm: PDHG

• Compute-bound applications:
• Performance limited by processor speed

• Benchmark: LINPACK, HPL

• Closest LP algorithm: Barrier
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Scaling – PDHG (Iterations per Second, model zib01)

• Improvement from Grace CPU to Hopper GPU: ~8X
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Scaling – Matrix-Matrix Multiply (fp64 Tflops)

• Improvement from Grace CPU to Hopper GPU: ~23X

• Improvement from EPYC 9655 to Hopper GPU: ~7X
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Sparse Factorization Performance (Gflops)

• Geometric mean improvement – Grace CPU to Hopper GPU: ~4.5X
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Sparse Factorization Performance (Gflops)

• Geometric mean improvement - EPYC 9655 to Hopper GPU: ~1.5X
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Options for Exploiting 
Parallelism
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• Implementation mirrors NeurIPS 2021 
paper
• …and associated open-source code

• Performance limited by speed of sparse 
matrix-vector multiplies
• Easily saturates most memory systems

• Integrated with Gurobi 12.0, but not yet 
released

PDHG (parallel CPU and GPU implementations)
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• Standard Gurobi barrier code

• Factorization scales extremely well to 32 
cores
• Most other steps scale fairly well
• A few notable exceptions
• How well does it scale on 64+ cores?

• We did some tuning in Gurobi 12.0 barrier 
to get more out of modern, high-core-count 
systems

Barrier – Parallel Cholesky Factorization
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• Use GPU for factorization instead of PDHG
• Not as massively parallel, but still quite 

parallel

• Nvidia cuDSS (Direct Sparse Solver) library
• Very fast for factorization and solves

• Integrated with Gurobi 12.0, but not yet 
released

Other Parallel Barrier Options: GPU Factorization
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• Lots of interest in the past
• Parallelism?

• Basically the same as PDHG
• Sparse matrix-vector multiplies
• Dense vector operations

• Two main problems:
• Low accuracy solutions
• Fails to converge on lots of models
• Sound familiar?

• Gurobi 12.0 barrier includes a parallel 
iterative solver
• Triggered automatically

• Nice property
• Iterates are ‘well centered’
• Can transition smoothly to factorization

Other Parallel Barrier Options: Iterative Solver



Tolerances and Convergence
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Linear vs (Locally) Quadratic Convergence
Model thk_63

• Practical implication:
• Termination decision required for first-order method

• No real decision needed for interior-point method
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Accumulated Error

• A few sources of additional error:
• Scaling

• Essential for convergence

• Presolve
• Important for reducing model size

Presolve

Scaling Unscaling

Unpresolve

User model
Solution to 
user model

Solver (simplex / barrier / PDHG)
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Presolve and Scaling (model pds-100)

• Residuals grow substantially
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Presolve and Scaling (model rwth-timetable)

• Residuals grow substantially
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• Termination tolerances
• Barrier, simplex (absolute): ||b–Ax||∞
• PDHG (relative): ||b-Ax||2 / ||b||2

• What termination criteria are acceptable?
• Not a lot of experience with this tradeoff

• Intuitive interpretation of relative tolerance…
• Solution is ‘close’ to optimal
• A few digits of accuracy

• Consider:
• A model with:

• 1M rows, all ‘xi + xj <= 1’
• One ‘capacity’ constraint: y1 + y2 <= 107

• A 1e-4 relative tolerance allows:
• Solution with ‘xi + xj = 2’ for every constraint

Tolerances
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• Termination: 1e-4 relative residual

• Constraint:

c855: 1.406874 x1087 + 1.406874 x1088 + 1.48092 x1140 + 1.48092 x1141+ 1.406874 x1086 + 
1.558863 x1195 + 1.558863 x1196 + 1.48092 x1139 + 1.640908 x1256 + 1.640908 x1257 + 
1.558863 x1194 + 1.727272 x1321 + 1.727272 x1322 + 1.640908 x1255 + 1.818181 x1386 + 
1.818181 x1387 + 1.727272 x1320 - x1431 + 1.818181 x1385 - 2.272727 x1429 <= -1.799672

• Constraint violation:   0.4

• 1e-4 relative residual leads to 22% constraint violation

Example – pilots
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• Termination: 1e-4 relative residual

• Flow conservation constraint:

R13193: - C060622 + C060633 + C060666 + C060699 + C060732 + C060765 + C060798 + 
C060831 + C060864 + C060897 + C060930 + C060963 + C060996 + C061029 = 0

• Flow through node:    C060622 = 372

• Constraint violation:   13.5

• 1e-4 relative residual leads to 4% phantom flow through node

Example – pds-100 (network flow model)
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Crossover As Equalizer?

• We suspect that most applications require small absolute residuals

• How to reconcile that with PDHG?

• Crossover

• Routine part of barrier solution process

• Barrier often produces solutions with non-trivial errors

• Modern crossover codes can handle this (to some extent)



Performance Results
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Performance Tests – Algorithms and Machines

• Consider 8 options:
• Barrier on 72-core Grace CPU

• Cholesky factorization

• Iterative solver

• PDHG on 72-core Grace CPU

• Relative tolerances of 1e-4, 1e-5, 1e-6

• Barrier on absolute latest 96-core CPU
• AMD EPYC 9655

• Barrier and PDHG (1e-6) on Hopper GPU
• Cholesky factorization and solves run on GPU

• Crossover always runs on the CPU

• All are measured results from our own implementations

• Some not yet in a released product

• First five all run on the same hardware
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Performance Tests - Models

• Choose a set of models where existing methods struggle
• Goal is to understand how to push the frontier

• Nearly all have been mentioned in papers about PDHG



© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 42

Performance – model rwth-timetable

751

10 20 40

397

303

12

13

560

345

19

11

75

100

100

200

300

400

500

600

700

800

Barrier, 64 Grace
cores

Iterative (1e-4 rel
tol)

PDHG (1e-4 rel
tol)

PDHG (1e-5 rel
tol)

PDHG (1e-6 rel
tol)

Barrier, 64 EPYC
cores

Barrier, Hopper PDHG (1e-6 rel
tol),  Hopper

Iterations Crossover

Seconds

• Barrier benefits from faster CPU/GPU • Crossover time depends on start point quality
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Performance – model grid10
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• More accurate start doesn’t always pay off • GPU barrier isn’t always faster
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Performance – model zib01
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• Crossover from PDHG can be fickle
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Performance – model rmine25
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• Crossover sometimes requires an extremely accurate start point 
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Performance – model thk_63
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• Sometimes there are lots of good options



Conclusions
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• PDHG first LP algorithm to put convergence tolerances front and center
• Never an issue for simplex or barrier

• What is acceptable accuracy?
• Before scaling and presolve (typically) degrade it

Convergence Criteria
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• Effective general-purpose method 
probably requires crossover to a basic 
solution
• Issues:

• Highly sequential
• Can be slow when starting point has 

substantial violations

• Pushes tolerance question even 
further into the fore

• New algorithms?

Crossover
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• PDHG…
• Competitive in a few years
• That’s exciting

• Even if only on a small set of models

• Technology is still evolving

• Difficult LPs always benefited from 
having multiple algorithms available
• Primal simplex/dual 

simplex/barrier/concurrent

• Could make new classes of models 
solvable

A New Horse in the Race
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• GPU is a 10X opportunity
• For both PDHG and barrier

• Doesn’t always wind up on the 
bottom line
• Still early

GPU
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• Several new options for solving giant LP models

• As is typical, each has strengths and weaknesses
• Probably opportunities for them to cooperate

• Accuracy
• PDHG: strong speed/accuracy tradeoff
• Significant opportunities if that tradeoff can be managed

Conclusions
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