
© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Tobias Achterberg
Fernando Orozco

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 2

Documentation

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 3

• Completely revamped documentation

• Based on Sphinx

• Hosted on readthedocs

• More modern design

• Better structure, more cross-references

• Example code in tabs for all languages

• Much easier to maintain
• Continuous integration of fixes and

improvements

New Documentation

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 4

Performance

Gurobi 12 Performance

problem class overall (>1 sec) hard models (>100 sec)

LP (default) 2.6% 0.9%

LP (barrier) 2.2% 4.8%

LP (dual simplex) 4.4% 3.6%

LP (primal simplex) 2.6% 2.0%

QP 9.1% ―*

SOCP 37.3% ―*

MIP 13.1% 18.9%

MIQP 13.0% 38.3%

MIQCP 4.1% 3.3%

nonconvex MIQCP 27.7% 68.5%

IIS 22.7% 37.3%

* too few “hard” models

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 5

Gurobi 12 Performance

problem class overall (>1 sec) hard models (>100 sec)

LP (default) 2.6% 0.9%

LP (barrier) 2.2% 4.8%

LP (dual simplex) 4.4% 3.6%

LP (primal simplex) 2.6% 2.0%

QP 9.1% ―*

SOCP 37.3% ―*

MIP 13.1% 18.9%

MIQP 13.0% 38.3%

MIQCP 4.1% 3.3%

nonconvex MIQCP 27.7% 68.5%

IIS 22.7% 37.3%

* too few “hard” models

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 6

• Derived variables presolve reduction 0.3%
• Consider (3.0% on affected models)

min 𝑐𝑇𝑥 𝑎𝑖
𝑇𝑥 + 𝑑𝑖𝑦 ≤ 𝑏𝑖 , 𝑖 = 1,… ,𝑚; 𝑙 ≤ 𝑥 ≤ 𝑢; 𝑦𝑙 ≤ 𝑦 ≤ 𝑦𝑢

with single variable 𝑦 and variable vector 𝑥
• If

∀𝑥 ∈ 𝑙, 𝑢 ∃𝑦 ∈ 𝑦𝑙 , 𝑦𝑢 : 𝑎𝑖
𝑇𝑥 + 𝑑𝑖𝑦 ≤ 𝑏𝑖 for all 𝑖 = 1,… ,𝑚

then
• 𝑦 and all these constraints can be removed and
• the value of 𝑦 can be calculated after an optimal solution for 𝑥 has been found.

• Also applicable to MIP, but need to verify integrality restrictions

• Stopping aggregator earlier for LP presolve 0.3%
• Wait for next presolve pass to continue (1.1% on affected models)

LP Presolve Improvements

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 7

• Primal simplex
• Improved numerics in ratio test 1.1%

• Dual simplex
• Performance improvement in Harris ratio test 1.9%

• Major rework of numerical aspects 1.3%

• Less objective shifting 0.7%

• Better crash basis for free variables 0.6%

• Improved numerics in ratio test 0.4%

• Improved numerics in feasibility check for basic variables 0.4%

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 8

Simplex Improvements

• Simplex: factorize more often in crossover 1.0%

• Simplify handling of dense blocks in A 0.7%
• No need for dense blocks to use complex data structures to exploit sparsity

• Use iterative linear system solves in first barrier iterations 0.4%
• Faster iterations than with Cholesky factorization (9.7% on affected models)

• Less accurate

Barrier Improvements

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 9

Gurobi 12 Performance

problem class overall (>1 sec) hard models (>100 sec)

LP (default) 2.6% 0.9%

LP (barrier) 2.2% 4.8%

LP (dual simplex) 4.4% 3.6%

LP (primal simplex) 2.6% 2.0%

QP 9.1% ―*

SOCP 37.3% ―*

MIP 13.1% 18.9%

MIQP 13.0% 38.3%

MIQCP 4.1% 3.3%

nonconvex MIQCP 27.7% 68.5%

IIS 22.7% 37.3%

* too few “hard” models

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 10

• Doubleton presolve aggregation inside cones 7.8%
• Linear equality 𝑦 = 𝑎𝑥 can be used for aggregation even if 𝑦 appears in a cone

• Improved dense column handling for SOCP 4.7%

• Implicit handling of cone variable upper bounds 2.7%
• See Andersen, Roos, Terlaky (2000), Sturm (2002), Goldfarb, Scheinberg (2005)

SOCP Improvements

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11

Gurobi 12 Performance

problem class overall (>1 sec) hard models (>100 sec)

LP (default) 2.6% 0.9%

LP (barrier) 2.2% 4.8%

LP (dual simplex) 4.4% 3.6%

LP (primal simplex) 2.6% 2.0%

QP 9.1% ―*

SOCP 37.3% ―*

MIP 13.1% 18.9%

MIQP 13.0% 38.3%

MIQCP 4.1% 3.3%

nonconvex MIQCP 27.7% 68.5%

IIS 22.7% 37.3%

* too few “hard” models

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 12

• Simplex 7.6%
• 7 individual improvements (including Harris ratio test and numerical improvements)

• Presolve 4.3%
• 22 individual improvements (including derived variables reduction)

• Cutting planes 2.0%
• 11 individual improvements (including dual implied bound cuts)

• Node presolve 1.6%
• 5 individual improvements

• Parallelism 1.5%
• Preempt sub-MIPs and node LP solves for parallel synchronization

• Improved usage of hyper-threads

• Primal heuristics 1.2%
• 4 individual improvements

• Branching 0.9%
• Use Driebeek penalties more often instead of strong branching

• Conflict analysis 0.3%
• Do not ignore Farkas proofs with flipped basic variables

• Memory management 0.2%
• Reduced number of memory allocations

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 13

MIP Improvements

In Gurobi’s MILP benchmark suite, the latest
version delivers:
• A 91x speed-up over version 1.1 in

geometric mean (PAR-10) of runtimes
• Only 197 models remain unsolved after

10,000 seconds with the latest version.
The test set consists of all models that can
be solved by at least one version.

MILP
Performance Evolution

1795

1467

1245

648

374

219

91x speed-up

1x

19,1x

38,2x

197 unsolved
models

0

10

20

30

40

50

60

70

80

90

100

1.1 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

S
p

e
e

d
-u

p

Gurobi Version

Gurobi Version Comparison: Speed and Solvability (PAR-10)
Gurobi MILP Benchmark Suite

Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v5 @ 3.50GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 8273 models:
- 788 discarded due to inconsistent answers
- 2286 discarded that none of the versions can solve
- speed-up measured on >100s bracket: 3076 models

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 14

Gurobi 12 Performance

problem class overall (>1 sec) hard models (>100 sec)

LP (default) 2.6% 0.9%

LP (barrier) 2.2% 4.8%

LP (dual simplex) 4.4% 3.6%

LP (primal simplex) 2.6% 2.0%

QP 9.1% ―*

SOCP 37.3% ―*

MIP 13.1% 18.9%

MIQP 13.0% 38.3%

MIQCP 4.1% 3.3%

nonconvex MIQCP 27.7% 68.5%

IIS 22.7% 37.3%

* too few “hard” models

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 15

• Node presolve 10.2%
• Improved reduced cost fixing

• Presolve 7.1%
• Improved quadratic constraint to indicator translation
• Quadratic aggregation

• Branching 4.2%
• Improved spatial branching value selection
• Use more strong branching in spatial branching

• Restarts 2.6%
• More aggressive restarts for quadratic and nonlinear models

• Primal heuristics 1.7%
• Improved fixing strategy in RINS-like heuristic

• Simplex improvements for nonconvex MIQCP 0.7%
• Deactivate numerically problematic McCormick constraints

• MIP and simplex improvements often carry over (not explicitly measured)

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 16

Nonconvex MIQCP Improvements

In Gurobi’s nonconvex MIQCP benchmark
suite, the latest version delivers:
• A 96x speed-up over version 9.0 in

geometric mean (PAR-10) of runtimes
• Only 33 models remain unsolved after

10,000 seconds with the latest version.
The test set consists of all models that can
be solved by at least one version.

Nonconvex MIQCP
Performance Evolution

161

93

31

96x speed-up

1x

70,4x

33 unsolved
models

0

20

40

60

80

100

120

9.0 9.1 9.5 10.0 11.0 12.0

S
p

e
e

d
-u

p

Gurobi Version

Gurobi Version Comparison: Speed and Solvability (PAR-10)
Gurobi Nonconvex MIQCP Benchmark Suite

Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v5 @ 3.50GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 1064 models:
- 51 discarded due to inconsistent answers
- 332 discarded that none of the versions can solve
- speed-up measured on >100s bracket: 286 models

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 17

Gurobi 12 Performance

problem class overall (>1 sec) hard models (>100 sec)

LP (default) 2.6% 0.9%

LP (barrier) 2.2% 4.8%

LP (dual simplex) 4.4% 3.6%

LP (primal simplex) 2.6% 2.0%

QP 9.1% ―*

SOCP 37.3% ―*

MIP 13.1% 18.9%

MIQP 13.0% 38.3%

MIQCP 4.1% 3.3%

nonconvex MIQCP 27.7% 68.5%

IIS 22.7% 37.3%

* too few “hard” models

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 18

• MIP IIS computation fundamental operation
• Remove a set of constraints, solve the resulting sub MIP

• If infeasible, discard the removed constraints; remaining problem is also infeasible

• Otherwise restore the removed constraints, remove another set of constraints

• Numerous possible IIS search strategies for choosing constraints to remove
• Disconnected components can help identify good sets of constraints to remove

• Model

𝐴1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐴𝑘

𝑥1

⋮
𝑥𝑘

≤
𝑏1

⋮
𝑏𝑘

is infeasible if and only if at least one of

𝐴𝑖𝑥
𝑖 ≤ 𝑏𝑖

is infeasible

IIS Improvements
Disconnected Components

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 19

• Exploit disconnected components 8.1%
• For models with disconnected components, find one infeasible component

• Try smallest component first

• Apply node limit for component solves

• Bad case: difficult feasible small component, trivially infeasible larger component

• Discard other components from infeasible subsystem

• Produce disconnected components earlier 9.5%
• Change IIS search strategy to produce disconnected components earlier

• Find separator in row intersection graph

• Try removing all rows in separator at once

• If this is infeasible: we got a disconnected infeasible subsystem

IIS Improvements
Disconnected Components

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 20

𝐴1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐴𝑘

𝑥1

⋮
𝑥𝑘

≤
𝑏1

⋮
𝑏𝑘

• Grow neighborhood of “definite” IIS rows 3.8%
• IIS algorithm identifies “definite” IIS rows:

• Rows that need to be member of infeasible subsystem

• Grow neighborhood in row intersection graph until certain size

• Try removing everything else

• If this is infeasible: we got a smaller infeasible subsystem

• Will often automatically zoom in on small component

IIS Improvements
Exploiting Neighborhoods

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 21

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 22

Global MINLP

• Outer approximation
• To construct LP relaxation

• Adaptive constraints
• To tighten LP relaxation based on local bounds of search tree nodes

• Spatial branch-and-bound
• To resolve nonlinear constraint violations

• Presolve and OBBT
• To tighten domains of variables and improve problem formulation

• Cutting planes
• To tighten the LP relaxation

• Node presolve
• To tighten local bounds of variables at search tree nodes

• Primal heuristics
• To help finding feasible solutions
• In particular: interior point algorithm to get locally optimal solutions for continuous NLPs

Solving MINLPs to Global Optimality
R

eq
u

ir
ed

O
p

ti
o

n
al

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 23

• Linear relaxation of convex hull of nonlinear
constraint

• Based on global bounds of variables

• Use small number of tangents and secants

Dynamic Outer
Approximation

lb ub𝑥

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 24

• Tighter bounds (at local search tree nodes)

• Yield tighter outer approximation

• Automatically calculated using “adaptive
constraints”

• Change coefficients and rhs values in LP
relaxation on the fly

Dynamic Outer
Approximation

lb ub𝑥lb‘ ub‘

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 25

Nonlinear Constraints

• Gurobi 9.0 and later provide API to define univariate general function constraints
• 𝑦 = 𝑒𝑥, 𝑦 = 𝑎𝑥

• 𝑦 = ln 𝑥 , 𝑦 = log𝑎(𝑥)

• 𝑦 = sin 𝑥 , 𝑦 = cos 𝑥 , 𝑦 = tan 𝑥

• 𝑦 = 𝑥𝑎

• 𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

• Gurobi 9.0 – 10.0:
• Function constraints are replaced during presolve by a piecewise-linear approximation

• Gurobi 11.0:
• Can choose to treat function constraints exactly by a dynamic outer approximation

• Gurobi 12.0:
• Supports general nonlinear constraints by a dynamic outer approximation

• Multivariate compound nonlinear constraints

addGenConstrExp(), addGenConstrExpA()
addGenConstrLog(), addGenConstrLogA()
addGenConstrSin(), addGenConstrCos(), addGenConstrTan()
addGenConstrPow()
addGenConstrPoly()

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 26

• Gurobi supports selected univariate function constraints y = 𝑓(𝑥)
• Trigonometric, power functions, logarithms, exponentials, etc.
• Can be used as building blocks for general (multivariate) nonlinear constraints

• Example: Suppose we want to model

𝑓 x = 1 + x2 + ln x + 1 + x2 ≤ 2, x ≥ 0

• We introduce auxiliary variables 𝑢, 𝑣, 𝑤, 𝑧 ≥ 0 and constraints as follows:
• u = 1 + x2, 𝑢 = 𝑣2, 𝑤 = x + 𝑣, 𝑧 = ln𝑤
• Then 𝑓 x ≤ 2 can be represented as 𝑣 + 𝑧 ≤ 2

General Nonlinear Constraints

𝑣 = 𝑢 𝑤 = x + v

𝑧 = ln𝑤

𝑢 = 1 + x2

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 27

• Each individual constraint of decomposition is subject to feasibility tolerance

• Result could be that general nonlinear constraint is violated much more

• If user performed the decomposition manually
• No way for Gurobi to know that an underlying compound constraint exists

• Solution will be feasible (within tolerances) only for decomposed model

• If user specifies general nonlinear constraint directly in Gurobi 12
• Gurobi can check the violation of the compound constraint and reject violated solutions

Decomposition and Feasibility Tolerance

𝑢 − x2 = 1 (±𝜀)
𝑣 − 𝑢 = 0 (±𝜀)

𝑤 − x − v = 0 (±𝜀)
𝑧 − ln𝑤 = 0 (±𝜀)
𝑣 + 𝑧 ≤ 2 (+𝜀)

1 + x2 + ln x + 1 + x2 ≤ 2 (+𝜀)⇔

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 28

• Each individual constraint of decomposition is subject to feasibility tolerance

• Result could be that general nonlinear constraint is violated much more

• If user performed the decomposition manually
• No way for Gurobi to know that an underlying compound constraint exists

• Solution will be feasible (within tolerances) only for decomposed model

• If user specifies general nonlinear constraint directly in Gurobi 12
• Gurobi can check the violation of the compound constraint and reject violated solutions

Decomposition and Feasibility Tolerance

𝑢 − x2 = 1 (±𝜀)
𝑣 − 𝑢 = 0 (±𝜀)

𝑤 − x − v = 0 (±𝜀)
𝑧 − ln𝑤 = 0 (±𝜀)
𝑣 + 𝑧 ≤ 2 (+𝜀)

1 + x2 + ln x + 1 + x2 ≤ 2 (+𝜀)⇎

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 29

• Example: y =
𝑥

sin 𝑥

• One solution:

• 𝑥′ = 0.0001

• 𝑦′ = 1.0000000016666666

• Decomposition: 𝑢 = sin 𝑥 , 𝑣 = 𝑢−1, 𝑦 = 𝑥 ∙ 𝑣

• One solution:

• 𝑥′ = 0.0001

• 𝑢′ = 0.000099999999833333343

• 𝑣′ = 10000.000016666666

• 𝑦′ = 1.0000000016666666

Decomposition and Feasibility Tolerance

• Example: y =
𝑥

sin 𝑥

• One solution:

• 𝑥 = 0.0001

• 𝑦 = 1.0000000016666666

• Gurobi model: 𝑢 = sin 𝑥 , 𝑣 = 𝑢−1, 𝑦 = 𝑥 ∙ 𝑣

• A solution with a violation within a tolerance of 10−6:

• 𝑥′′ = 0.0001

• 𝑢′′ = 0.000098999999833333343 𝑢′′ = sin 𝑥′′ − 10−6

• 𝑣′′ = 10101.010118015167

• 𝑦′′ = 1.0101010118015167

Violation of 10−6 in auxiliary constraint leads to violation of 10−2 in composite constraint

Compound constraint behaves very nicely for 𝑥 ∈ −2.5,2.5 : no numerical issues expected

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 30

• Each individual constraint of decomposition is subject to feasibility tolerance

• Result could be that general nonlinear constraint is violated much more

• If user performed the decomposition manually (required in Gurobi 11)
• No way for Gurobi to know that an underlying compound constraint exists

• Solution will be feasible (within tolerances) only for decomposed model

• If user specifies general nonlinear constraint directly (available in Gurobi 12)
• Gurobi can check the violation of the compound constraint and reject violated solutions

GUROBI 11

Decomposition and Feasibility Tolerance

𝑢 − x2 = 1 (±𝜀)
𝑣 − 𝑢 = 0 (±𝜀)

𝑤 − x − v = 0 (±𝜀)
𝑧 − ln𝑤 = 0 (±𝜀)
𝑣 + 𝑧 ≤ 2 (+𝜀)

⇎
GUROBI 12

1 + x2 + ln x + 1 + x2 ≤ 2 (+𝜀)

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 31

• Preferred Gurobi API: gurobipy

• Matrix-friendly algebraic modeling

• Third-party modeling tools

• AMPL

• GAMS

• JuMP

• Frontline

• Additional vendors may add support for Gurobi 12
nonlinear constraints later

• Low-level array-based Gurobi APIs

• C

• C++

• Java

• .NET

• LP and MPS files

Nonlinear Constraints APIs for Gurobi 12

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 32

• There is a new NLExpr object in gurobipy

Nonlinear Expressions in gurobipy

x = model.addVar(name="x")
y = model.addVar(name="y")
z = model.addVar(name="z")

expr1 = 2.0 * x # LinExpr
expr2 = x * y # QuadExpr
expr3 = x * y * z # NLExpr
expr4 = x / y # NLExpr

model.addGenConstrNL(z, x / y) # Constraint z = x / y
model.addConstr(z == x / y) # Constraint z = x / y
model.addConstr(z <= x / y) # Not possible
model.addConstr(2.0 * z == x ** 5) # Not possible

Use z = (x**5)/2
instead

Use z = x/y –s, s ≥ 0
instead

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 34

gurobipy Example: AC Optimal Power Flow
Input Data and Vector Variables

import numpy as np

Number of Buses (Nodes)
N = 4

Conductance/susceptance components
G = np.array([[1.7647, -0.5882, 0. , -1.1765],

[-0.5882, 1.5611, -0.3846, -0.5882],
[0. , -0.3846, 1.5611, -1.1765],
[-1.1765, -0.5882, -1.1765, 2.9412]])

B = np.array([[-7.0588, 2.3529, 0. , 4.7059],
[2.3529, -6.629 , 1.9231, 2.3529],
[0. , 1.9231, -6.629 , 4.7059],
[4.7059, 2.3529, 4.7059, -11.7647]])

Assign bounds where fixings are needed
v_lb = np.array([1.0, 0.0, 1.0, 0.0])
v_ub = np.array([1.0, 1.5, 1.0, 1.5])
P_lb = np.array([-3.0, -0.3, 0.3, -0.2])
P_ub = np.array([3.0, -0.3, 0.3, -0.2])
Q_lb = np.array([-3.0, -0.2, -3.0, -0.15])
Q_ub = np.array([3.0, -0.2, 3.0, -0.15])
theta_lb = np.array([0.0, -np.pi/2, -np.pi/2, -np.pi/2])
theta_ub = np.array([0.0, np.pi/2, np.pi/2, np.pi/2])

import gurobipy as gp
from gurobipy import GRB
from gurobipy import nlfunc

env = gp.Env()
model = gp.Model("OptimalPowerFlow", env=env)

real power for buses
P = model.addMVar(N, name="P", lb=P_lb, ub=P_ub)

reactive for buses
Q = model.addMVar(N, name="Q", lb=Q_lb, ub=Q_ub)

voltage magnitude at buses
v = model.addMVar(N, name="v", lb=v_lb, ub=v_ub)

voltage angle at buses
theta = model.addMVar(N, name="theta", lb=theta_lb,
ub=theta_ub).reshape(N, 1)

Minimize Reactive Power at buses 1 and 3
model.setObjective(Q[[0, 2]].sum(), GRB.MINIMIZE)

G = np.array([[1.7647, -0.5882, 0. , -1.1765],
[-0.5882, 1.5611, -0.3846, -0.5882],
[0. , -0.3846, 1.5611, -1.1765],
[-1.1765, -0.5882, -1.1765, 2.9412]])

B = np.array([[-7.0588, 2.3529, 0. , 4.7059],
[2.3529, -6.629 , 1.9231, 2.3529],
[0. , 1.9231, -6.629 , 4.7059],
[4.7059, 2.3529, 4.7059, -11.7647]])

gurobipy Example: AC Optimal Power Flow
Nonlinear Matrix Constraints using Numpy Broadcasting

Real power balance
P_i = V_i \sum_{j=1}^{N} V_j (G_{ij} \cos(\theta_i - \theta_j) + B_{ij} \sin(\theta_i - \theta_j))
constr_P = model.addGenConstrNL(

P,
v * (v @ (G * nlfunc.cos(theta - theta.T) + B * nlfunc.sin(theta - theta.T))),
name="constr_P",

)

Reactive power balance
Q_i = V_i \sum_{j=1}^{N} V_j (G_{ij} \sin(\theta_i - \theta_j) - B_{ij} \cos(\theta_i - \theta_j))
constr_Q = model.addGenConstrNL(

Q,
v * (v @ (G * nlfunc.sin(theta - theta.T) - B * nlfunc.cos(theta - theta.T))),
name="constr_Q",

)

model.optimize()

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 35

G = np.array([[1.7647, -0.5882, 0. , -1.1765],
[-0.5882, 1.5611, -0.3846, -0.5882],
[0. , -0.3846, 1.5611, -1.1765],
[-1.1765, -0.5882, -1.1765, 2.9412]])

B = np.array([[-7.0588, 2.3529, 0. , 4.7059],
[2.3529, -6.629 , 1.9231, 2.3529],
[0. , 1.9231, -6.629 , 4.7059],
[4.7059, 2.3529, 4.7059, -11.7647]])

gurobipy Example: AC Optimal Power Flow
Matrix Constraints using Numpy Broadcasting

Real power balance
P_i = V_i \sum_{j=1}^{N} V_j (G_{ij} \cos(\theta_i - \theta_j) + B_{ij} \sin(\theta_i - \theta_j))
constr_P = model.addGenConstrNL(

P,
v * (v @ (G * nlfunc.cos(theta - theta.T) + B * nlfunc.sin(theta - theta.T))),
name="constr_P",

)

Reactive power balance
Q_i = V_i \sum_{j=1}^{N} V_j (G_{ij} \sin(\theta_i - \theta_j) - B_{ij} \cos(\theta_i - \theta_j))
constr_Q = model.addGenConstrNL(

Q,
v * (v @ (G * nlfunc.sin(theta - theta.T) - B * nlfunc.cos(theta - theta.T))),
name="constr_Q",

)

model.optimize()

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 36

cos theta 0 − theta 0 ⋯ cos theta 0 − theta 3
⋮ ⋱ ⋮

cos theta 3 − theta 0 ⋯ cos theta 3 − theta 3

• Gurobi 11:

• function constraints (univariate) models

• Gurobi 12:

• function constraints (univariate) models

• nonlinear constraints (multivariate) models

Global MINLP
Solution Quality and Performance

• Better solution quality: v11 < v12 univariate < v12 multivariate

• Equally fast for univariate, faster for multivariate NL constraints

1
,0

0

1
,0

0

1
,0

0

1
,0

1

1
,0

0

0
,8

8

1
,2

8

1
,5

9

1
,6

2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

>0s >1s >10s
Sp

ee
d

u
p

1
1

6

7
6

4
3

2
9

2
2

1
5

7
2

5
3

2
9

2
1

1
4

7

3
9

4 0 0 0 0

0

20

40

60

80

100

120

>1e-5 >1e-4 >1e-3 >1e-2 >1e-1 >1e+0

m

o
d

el
s

Violation

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 37

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 38

Minor Features

• Support for SetSolution from callbacks for
Compute Server runs

• Pass user heuristic solutions to solving process

• E.g., to repair solution that violates lazy constraint

• Additional information in multi-objective callback

• Solving status

• runtime

• work

• iteration count

• node count

• number of nodes left

• incumbent value

• dual bound

• MIP gap

• Provides information about the sub-problem solve
for the most recent objective function

Callbacks

• Callback-settable parameters

• TimeLimit

• WorkLimit

• NodeLimit

• BarIterLimit

• PumpPasses

• Simplify custom termination criteria

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 39

• Restrict tuning to a set of parameters

• E.g., only tune cutting planes or heuristics

• Tuning multi-objective models

Tuning Tool

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 40

Additional Features

• “ObjBound” attribute for LP models

• “BarPi” attribute for LP models

• In-place conversion of models to fixed model

• Anonymizing data files with “IgnoreNames=1” parameter

• Support for XZ compressed files

• Logging improvements

• Display path to Gurobi shared library

• Display non-default parameter settings

• Asynchronous optimization in gurobipy

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 41

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 42

Hardware Resource Management

Memory Management

• Fewer memory allocations
• Avoids out-of-memory due to memory fragmentation
• 0.5% performance improvement on hard MIP models

• Less memory consumption for large solution pools
• Due to sparse storage of solution pool vectors

• 1.4% performance improvement on hard MIP models
• With PoolSearchMode=2 and PoolSolutions=1000

• 46 mem limit hits → 35 time limit hits

• Attributes to query memory consumption
• Current and maximum memory used

• During (in callback) and after optimization

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 43

CPU Utilization

• More root node parallelization
• Run sub-MIP heuristics with multiple threads

• In addition to parallel root cut loops

• 0.4% performance improvement overall (4 cores)

• Better MIP search tree parallelization
• Preempt long running heuristics and node LP solves

• Continue heuristics and node LP solves after MIP
synchronization

• 1.4% performance improvement overall (4 cores)

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 44

Compute Server Threads

• Thread-based load balancing
• Compute Server

• Limit total number of threads running at same time

• Cluster Manager

• Assign jobs to servers based on thread load

picture by Torkild Retvedt
https://www.flickr.com/photos/torkildr/3462607995/in/photostream/

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 45

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 46

• Improves the distribution of threads across
cluster nodes to ensure that concurrent jobs
use available computational resources
efficiently without overloading any node.

• Remote server configuration properties

• NODE_THREADLIMIT: A limit on the total
number of threads allowed to run
concurrently on the server simultaneously.

• FIXED_NODE_THREADLIMIT: Indicates
whether the node thread limit can be
changed once a node has started.

• ThreadLimit gives upper bound on Threads
parameter

Thread-based Load
Balancing

Batch

Client

Python

Cluster Manager

• Load Balancing Algorithm

• Places jobs where threads are most
available.

• Prioritizes nodes with fewer running jobs.

• Jobs exceeding all nodes’ thread limits are
rejected.

Thread-based Load
Balancing

Node 2

Node 1

Node 3

Cluster manager

Limit 16
Reservation 12

Thread

Limit 8
Reservation 2

Thread

Limit 32
Reservation 28

Thread

Job assigned
to Node 3

• Administrators can interrupt running jobs via
the Web UI or the

grbcluster job interrupt <JOBID>

command.

• Behavior on Interruption:

• Optimization stops gracefully, as if a normal
stopping condition (e.g., time limit) was
reached.

• The job remains active, awaiting further
instructions.

• Compatibility: Available in runtimes 12.0.0+.
Ignored in earlier versions.

Job Interruption

Questions?

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved

